

ZEISS Gear Metrology

Specifications

Last updated: 2023-05 Seeing beyond

Gear types and variants

Gear types and variants						
Gear types	Variants		Software solution			
Cylindrical gears	Involute profiles and splines Spur and helical gears External and internal gears Gear segments		GEAR® PRO involute basis			
Special involute gears	Conical gears Beveloids Sector shafts		GEAR® PRO involute advanced ¹⁾			
Non-involute gears	Linear profiles and non-involute Serrations Parallel key splines Straight transversal profiles (e.g		GEAR® PRO involute advanced ¹⁾			
Bevel gears	Spiral and straight bevel gears Pinions and ring gears Bevel dies	Nominal data based on Master gear method (digitalization) or CAD model	GEAR® PRO bevel basis			
		Nominal data imported via interface Gleason interface Klingelnberg interface DMG MORI interface	GEAR® PRO bevel advanced 1)			
Worm gears	Worm shafts with flank forms ZI ZA ZN ZK		GEAR® PRO worm basis			
Rotors/ Screw compressors	Male rotors Female rotors Straight rotors		GEAR® PRO rotor basis			
Gear hobs	One- and multiple-thread gear I for production of involute gears Fullprofile gear hobs (with or wi		GEAR® PRO hob basis			
	Gear hobs with separated cuttir for right and left flank Gear hobs with additional tip tu		GEAR® PRO hob advanced 1)			
Special gears	Topographical evaluation of e.g hirth gearings, worm wheels by nominal data based on Master gear method (digitalizat CAD model		GEAR® PRO bevel basis			
GPS evaluation 130	GPS evaluations (geometrical product specificati e.g. diameter, roundness, runou		CALYPSO basis			
Other gears and tools	Customized solutions for e.g. gear racks on request		CALYPSO basis CALYPSO curve ¹⁾			

Features of the GEAR® PRO product family from ZEISS

Profile (F _{a'} , f _{fa'} , f _{Ha})
Helix $(F_{\beta}, f_{\beta\beta}, f_{H\beta})$
Pitch (F _p , f _p , f _u , F _{pz/8})
Runout (F _p) Tooth thickness parameters (S. M. M. M. M.)
Tooth thickness parameters (S _s , M _{rK} , M _{dR} , M _{dK} , W _k)
Diameters (d _a , d _t) Reliefs (C, C, C, C, C)
Reliefs $(C_{\alpha \alpha'} \stackrel{\frown}{C}_{\beta l'} \stackrel{\frown}{C}_{\beta l'} \stackrel{\frown}{C}_{\beta l})$ Crownings $(C_{\alpha'} \stackrel{\frown}{C}_{\beta})$
Slope modifications ($C_{H\alpha'}$ $C_{H\beta'}$)
K-Diagram/Tolerance band
Design profile, Design helix
Automatic generated travel paths/navigation and stylus selection for measurement with and without rotary table
(also for horizontal orientation)
ISO, DIN, ANSI, AGMA, JIS, several company standards
Visualization, software simulation, nominal data definition for e.g. bevel gears, rotors, special gears
GEAR® PRO offline basis for creating offline measurement programs, simulation, later evaluation
PDF export, ASCII export, Q-DAS ASCII transfer format export ¹⁾ , CAD import/export (SAT, STEP, IGES)
GDE import/export
Gleason, Klingelnberg, DMG MORI
VOXEL data, STL data
Virtual gauging effective tooth thickness/gap width, Actual-Actual comparison,
single flank composite testing, order spectrum 1)

Supported systems and me	easuring methods of the GEAR® PRO	product family f	rom ZEISS				
Systems	Bridge CMMs		ZEISS CONTURA, ZEISS MICURA, ZEISS SPECTRUM, ZEISS SPECTRUM plus, ZEISS PRISMO, ZEISS PRISMO fortis, ZEISS PRISMO ultra, ZEISS PRISMO verity, ZEISS XENOS				
	Shop Floor CMMs		ZEISS DuraMax ZEISS MMZ G, ZEISS MMZ M, ZEISS MMZ T ZEISS O-INSPECT				
	Large CMMs						
	Multisensor CMMs						
	Systems for Computed Tomography	<i>y</i>	ZEISS METROTOM (VOXEL-data, STL-data)			
	Systems for 3D digitizing		e.g. ZEISS ATOS (ST	L-data)			
Gear measuring methods	Without rotary table		With rotary table				
	3-axis scanning Various active and passive probing as well as articulating probing syste supported ²⁾ Horizontal orientation supported ³⁾ Pallet measurement supported ³⁾		supported 2)	anning vassive probing systems centers with tailstock ZEISS TS sup-			
Probing systems	Active probing systems	Passive probing	systems	Non-contact probing systems			
	ZEISS VAST gold	ZEISS VAST XX	Г	ZEISS DotScan at ZEISS RDS 5)			
	ZEISS VAST XT gold	ZEISS VAST XX	T at ZEISS RDS 4)				
	ZEISS VAST XTR gold						

- Option, requires related basis package.
 Depending on CMM type.
 Not available for GEAR® PRO hob.
 Only rotational axis (A axis) supported.
 Non-contact measurement with chromatic confocal probing system only in combination with rotary table possible. Only available for GEAR® PRO involute.

Application examples

Application examples					
Gear measuring methods	Without rotary table	With rotary table			
metrious	Stylus system with single stylus (-Z orientation)	Stylus system with multiple styli or probing system with rotational axis and stylus system with single stylus	Stylus system with single stylus (side styli X/Y orientation)		
		**			
Cylindrical gears					
Bevel gears					
Worm gears	Not applicable				
Rotors/ Screw compressors	Not applicable				
Gear hobs	Not applicable	Not applicable			

Gear geometry specifications

Min. module	≥ 0.5 mm ¹⁾							
Max. workpiece	Without rotary table	See CMM specifications (workpiece weight)						
weight	With rotary table	See rotary table specifications (permissible loading (axial) and max. mass moment of inertia) ²⁾						
		External gears	Internal gears					
Max. workpiece length ³⁾	Vertical orientation	≤ Measuring range Z axis (G106)	≤ 0.5 x Measuring range Z axis (G106)					
	Horizontal orientation	≤ Measuring range Y axis (G105)	≤ 0.5 x Measuring range Y axis (G105)					
Max. workpiece diameter ³⁾	Vertical orientation	≤ Measuring range X axis (G104) - L _{StylusSystem}	≤ Measuring range X axis (G104)					
	Horizontal orientation	≤ Measuring range Z axis (G106) - L _{StylusSystem}	≤ Measuring range Z axis (G106)					

Comparison maximum workpiece diameter in relation to the different gear measuring methods

Gear measuring	Without rotary table	With rotary table			
methods	Stylus system with single stylus (-Z orientation)	Stylus system with multiple styli or probing system with rotational axis and stylus system with single stylus	Stylus system with single stylus (side styli X/Y orientation)		
		!!!			
Example	$\begin{aligned} &D_{max_1} \leq (G104) - L_{stylusSystem_1} \\ &L_{stylusSystem_1} = 2 \times L_1 \\ &L_1 \geq 5 \text{ mm for module 3.5 mm}^{5)} \end{aligned}$	$\begin{aligned} &D_{\text{max},2} \leq (\text{G104}) - L_{\text{StylusSystem},2} \\ &L_{\text{StylusSystem},2} = 4 \times L_2 \\ &L_2 \geq 100 \text{ mm for module 3.5 mm}^{5)} \end{aligned}$	$D_{max_3} \le (G104) - L_{StylusSystem_3}^{4}$ $L_{StylusSystem_3} = 2 \times L_3$ $L_3 \ge 100 \text{ mm for module 3.5 mm}^{5}$		
	L ₁ D _{max_1} L ₁	2 x L ₂ D _{max,2} 2 x L ₂	360°) L ₃ D _{max,3} L ₃		

Values of permissible loading and max. mass moment of inertia have to be considered incl. clamping fixtures (e.g. chuck) and faceplate.
 G 104 (measuring range X axis), G 105 (measuring range Y axis), G 106 (measuring range Z axis) acc. to the CMM specifications.

¹⁾ No software limitation, smallest/largest module is depending on each individual gear geometry and the smallest/largest permissible stylus tip diameter of the selected probing system. Module ≥ 0.5 mm normally always measureable, module < 0.5 mm has to be verified regarding accessibility and permissible stylus tip diameter.

Stylus system dimensions and clamping fixtures (e.g. chuck) have to be considered for max. workpiece dimensions. Typically the stylus system for the measurement without rotary table requires more measuring range of the CMM than the measurement with rotary table.

4) The max. diameter of a workpiece on a system with rotary table has to be less or equalt to the faceplate of the rotary table.

5) Typical values for stylus system. May vary in individual cases.

Gear Accuracy

Measuring-instrument group VDI/VDE 2612 part 6:2022-05	A+ 1)	А	В		С		D			
Tolerance class to be tested according to ISO 1328-1:2013-09	≤3	4	5	6	7	8	9	10	11	12
Recommended systems with active probing systems ²⁾	ZEISS PRISMO ultra ZEISS XENOS									
	ZEISS PRISMO ZEISS PRISMO fortis ZEISS PRISMO verity ZEISS MICURA									
			ZEISS CONT ZEISS MMZ ZEISS MMZ ZEISS MMZ ZEISS SPECT	G M T						
Recommended systems with passive probing systems ²⁾					ZEISS CONT ZEISS DuraM ZEISS MMZ ZEISS MMZ ZEISS O-INS ZEISS SPECT ZEISS SPECT	Max G M T PECT TRUM				

¹⁾ For the measuring-instrument group (A+), no recommendations for maximum permissible errors (MPE) can be established according to the current state of the art, taking into account the measurement uncertainty. For accuracies in tolerance class 3 (ISO 1328-1:2013-09), it is currently not possible to consistently assign a measuring-instrument group. Individual

Carl Zeiss Industrielle Messtechnik GmbH

73446 Oberkochen / Germany Sales: +49 7364 20-6336 Service: +49 7364 20-6337 +49 7364 20-3870 Fax: Email: info.metrology.de@zeiss.com

Internet: www.zeiss.de/imt

Carl Zeiss Industrial Metrology, LLC

6250 Sycamore Lane North Maple Grove, MN 55369/USA Phone: +1 763 744-2400 +1 763 533-0219 Fax:

Email: info.metrology.us@zeiss.com Internet: www.zeiss.com/metrology

maximum permissible errors shall be defined separately here between the manufacturer and the purchaser.

2) Profile and helix acceptance test can be performed with a gear artifact z = 30, m = 3.5 mm, d = 105 mm, $\alpha = 20^{\circ}$, $\beta = 0^{\circ} / 20^{\circ}$ r / 20° l, b = 70 mm (or similar gear artifact). Pitch and runout acceptance test can be performed with a gear artifact z = 30, m = 3.5 mm, d = 105 mm, $\alpha = 20^{\circ}$, $\beta = 0^{\circ}$, b = 30 mm (or similar gear artifact).