

ZEISS Correlative Microscopy Solutions

A Publication Reference List

ZEISS Correlative Microscopy Solutions A Publication Reference List

Authors: Dr. Renée Dalrymple, Dr. Eric Hummel, Tobias Volkenandt Carl Zeiss Microscopy GmbH, Jena, Germany

Date: March 2018

Introduction

The ability to combine information gathered using different imaging modalities through correlative microscopy has opened doors for new scientific discoveries and improved productivity of sample investigations. One of the largest challenges in these types of experiments is the time and effort involved in relocating the same area of the sample in successive instruments. Commercial solutions from ZEISS provide streamlined workflows and ensure quick and easy sample relocation to facilitate access to these multi-modal types of information. These solutions include Shuttle & Find and ZEN Correlative Array Tomography software modules as well as the use of ZEISS Atlas 5.

The Shuttle & Find software module for ZEN provides a quick and easy workflow for collecting and combining data from your ZEISS light and electron microscopes. Sample relocation is performed through the use of fiducial markers to calibrate the coordinates of the stage position between instruments. This can be accomplished through the use of special sample holders with embedded fiducials, coverslips with fiducial markers printed on them, or even defining your own sample holder. A quick three fiducial calibration on each instrument allows images to be acquired all over the sample and then relocated on the next system with the click of a button and removable fiducial markers allow for additional sample preparation steps in-between imaging modalities for uncompromised imaging with each technique.

For three dimensional correlative microscopy, ZEN Correlative Array Tomography (CAT) guides you through the complete workflow of detecting serial sections, imaging, and reconstructing the data from the light and electron microscope. Intuitive software wizards walk you through automatic recognition of serial sections and transfer of a user defined region of interest to all identified sections. Images of these regions are automatically acquired and then aligned in order to obtain a three dimensional image with z-resolution corresponding to the thickness of the sections. This technique can be used not only to obtain three dimensional light microscopy images with high z-resolution, but also to correlate them to SEM images for 3D correlative microscopy.

ZEISS Atlas 5 provides high end, software to automatically drive the SEM instruments as well as correlate images from multiple sources. Relocation of sample areas between microscopes can be accomplished via overview images or fiducial calibrations with Shuttle & Find. Efficiency of FIB-SEM imaging is also improved through the ability to precisely target sub-surface sites via correlation with light or X-ray data. It also provides the ability to automatically acquire array tomography data for 3D imaging [1].

This reference list compiles a collection of papers that have utilized, provided protocols, or reviewed correlative microscopy approaches. These examples of expanding the understanding of samples through correlative microscopy bridge a multitude of techniques including light (brightfield, widefield fluorescence, confocal, and superresolution), electron (SEM, FE-SEM, FIB-SEM, TEM), and X-ray microscopy in both life science and materials applications.

Copyright Notice (Cover Image):

Upper right: courtesy of Jeffrey L. Caplan and Kirk J. Czymmek, Bioimaging Center, Delaware Biotechnology Institute.

Bottom: courtesy of Kathleen L. Prudic, Department of Ecology and Evolutionary Biology, Yale University, Jeffrey L. Caplan and Kirk J. Czymmek, Bioimaging Center, Delaware Biotechnology Institute.

Life Science

Publication	Journal	Sample	Application	System	Sample relocation method	Alignment of images from different methods	z-stack alignment
Blazquez-Llorca L , Hummel E., Zimmer- mann H, Zou C , Burgold S, J. Rietdorf, J. Herms (2015). Correlation of two-photon in vivo imaging and FIB/SEM microscopy Journal of Microscopy, 259, 129 – 136.	Journal of Microscopy	Upper cortex mouse brain	In vivo correlative imaging	Multiphoton, FIB-SEM	S&F	lmageJ	ImageJ TomoJ
Cosenza, M. R., et al., 2017, Cell Reports 20, 1906–1920 August 22, 2017, doi:10.1016/j.celrep.2017.08.005				ZEISS Axio Observer.Z1, ZEISS Auriga 60 with Atlas 3D	Mattek dishes with coordi- nate system	TrakEM2 plugin of FIJI	
Markert, S. M., et al., 3D subcellular localization with superresolution array to- mography on ultrathin sections of various species, Methods in Cell Biology, Volume 140, ISSN 0091679X, doi:10.1016/bs.mcb.2017.03.004		Ultrathin sections of Caenorhabditis elegans, Trypano- soma brucei, and brain tissue of Cataglyphis fortis and Apis mellifera	Superresoution array tomography	ZEISS Elyra S. 1, ZEISS Crossbeam 540, JEOL JSM- 7500F, TESCAN XEIA3	Manually, imaged entire area of serial sections	Manually with Inkscape	IMOD or Fiji and AMIRA
Caplan, J., et al., Correlative Protein Localization in Yeast High-Resolution Localization of Fluorescent Proteins Using Shuttle & Find for Superresolution and Scanning Electron Microscopy. ZEISS White Paper, May 2013.		Yeast (Saccharo- myces cerevisiae), G-Protein coupled receptors	Correlative super- resolution and SEM imaging	ZEISS Elyra PS.1 (dSTORM and SIM), ZEISS Auriga 60	ZEISS Shuttle & Find with fiducial ITO- coverslips		
Kharkwal H, Smith CG, Wilson DW. 2016. Herpes simplex virus capsid localization to ESCRT-VP54 complexes in the presence and absence of the largetegument protein UL36p. J Virol 90:7257–7267. doi:10.1128/JVI.00857-16		HEK293 cells	Correlative light and electron microscopic analy- sis of HSV capsid/ Vps4-EQ-GFP colocalization	ZEISS Axio Observer, ZEISS Supra 40 SEM	ZEISS Shuttle & Find	ZEISS Axio- Vision software	
Hohn, K., et al., Preservation of protein fluorescence in embedded human den- dritic cells for targeted 3D light and elec- tron microscopy, Journal of Microscopy, Vol. 00, Issue 0 2015, pp. 1–8, doi:10.1111/jmi.12230		HIV-pulsed mature human dendritic cells	Localizing subcel- lular structures of interest in plastic embedded samples	ZEISS LSM 710, ZEISS Crossbeam Neon 40	Imprinted coor- dinate system, custom built plug-in for the LSM software	Reference marks at the interface were easily imaged in the confocal reflection mode	ImageJ
Tharkeshwar, A. K., et al., A novel approach to analyze lysosomal dysfunctions through subcellular proteomics and lipidomics: the case of NPC1 deficiency, Scientific Reports, 7:41408, doi:10.1038/srep41408		NPC1-KO HeLa cells	Correlative SIM and EM (SIM- CLEM) of Super- paramagnetic iron oxide nanoparti- cles (SPIONs) with filipin-positive degradative organelles	ZEISS Elyra S.1, JEOL JEM-1400	Marks on bottom of MatTek dishes	Overlaid using morphologi- cal signatures using GIMP software	
Thomas, C., et al., Functional and Struc- tural Investigation of Songbird Brain Projec- tion Neurons withShuttle & Find Correlative Microscopy in Life Sciences, ZEISS White Paper, July 2010		Zebra finch brain sections	CLEM to identify and investigate the ultrastructure of cells	ZEISS Axio Observer.Z1, ZEISS Supra 40VP SEM	ZEISS Shuttle & Find		
Thomas, C., et al., Multiscale Analysis of Bacteria Population in Legume Root Nodules with Shuttle & Find, ZEISS White Paper, July 2010		Root nodules of a mung bean plant (Vigna radiata), inoculated with the rhizobia Bradyrhizobium japonicum	CLEM of root nodules and rhizobia bacteria	ZEISS Axio Imager.M1, ZEISS Gemini 1530	ZEISS Shuttle & Find		

Life Science

Publication	Journal	Sample	Application	System	Sample relocation method	Alignment of images from different methods	z-stack alignment
Hummel, E., et al., Correlation of Two- Photon in Vivo Imaging and FIB-SEM Microscopy, ZEISS White Paper, June 2013		Mice expressing GFP under control of Thy-1 promoter (GFP-M line)	CLEM using two- photon imaging and FIB SEM	ZEISS LSM 710 with two-pho- ton excitation, ZEISS Crossbeam Auriga electron microscope	ZEISS Shuttle & Find	Cross-corre- lation	
Schaer, C., A., et al., Mechanisms of hap- toglobin protection against hemoglobin peroxidation triggered endothelial damage, Cell Death Differ. 2013 Nov; 20(11): 1569–1579, doi:10.1038/cdd.2013.113		Endothelial cells	CLEM of the redistribution of β-catenin and cellular structure	ZEISS Axio Im- ager.M1, ZEISS Gemini 1530	ZEISS Shuttle & Find Axio Vision Software 4.8.2	Adobe Photo- shop Software CS3	
Wang, W., et al., CEP162 is an axoneme- recognition protein promoting ciliary transition zone assembly at the cilia base, Nat Cell Biol. 2013 Jun; 15(6): 591–601, doi:10.1038/ncb2739		RPE1 cells	CLEM to reveal location of GFP- Cep162 and cilia tip structure	ZEISS Axio Observer, ZEISS Supra 40	ZEISS Shuttle & Find	ZEISS Axio- Vision v 4.8	
Fitzpatrick, J., A.J., et al., Correlative Light, Electron, and Ion Microscopy for the Study of Urinary Tract Infection Pathogenesis, Microsc. Microanal. 23 (Suppl 1), 2017, doi:10.1017/S1431927617007206		Whole bladders infected with GFPoverexpressing E. coli	CLEM to locate intracellular bacte- rial communities and investigate their ultrastructure	Laser Scanning Confocal micro- scope, FIB-SEM	ZEISS Shuttle & Find and fiducial ITO-coverslips	alignmnet of extracellular markers	
Karanasios et al; Autophagy initiation by ULK complex assembly on ER tubulove- sicular regions marked by ATG9 vesicles (2016), Nature Communications 7, 12420; doi:10.1038/ncomms1242		Cell culture HEK 293	CLEM to investigate the early stages of autophagosome formation.	ZEISS Crossbeam 540 Merlin3view Superresolution microscope (Nikon), LSM	Atlas5 for relocalization	Alignment using post- processing software	Volocity Software
Kasthuri, N., et al., Saturated Reconstruc- tion of a Volume of Neocortex, Cell 162, 648–661, July 30, 2015, doi:10.1016/j.cell.2015.06.054		Brain tissue serial sections	Automated technoogy for reconstruction of sub-volume of mouse neocortex	ZEISS Sigma scanning elec- tron microscope, ZEISS Atlas, ZEISS MultiSEM 505, FEI Magel- lan thru-the-lens detector		Matlab	VAST

Materials Science

Publication	Journal	Sample	Application	System	Sample relocation method	Alignment of images from different methods
Shearing, P., Gelb, J. & Brandon, N. Correlative Microscopy in the Laboratory: Analysis of the Triple-Phase Boundary in a Solid-Oxide Fuel Cell Electrode Using X-ray Computed Nanoto- mography and FIB-SEM. Microscopy and Microanalysis 16, 872–873 (2010). doi:10.1017/S1431927610055674	Microsc. Microanal.	Ni-YSZ SOFC (solid oxide fuel cell)	Energy Storage FIB-preparation for nano-XRM, FIB-SEM tomography	ZEISS Xradia Ultra, Nvision		
Chen, Y. et al. Direct-methane solid oxide fuel cells with hierarchically porous Ni-based anode deposited with nanocatalyst layer. Nano Energy (2014). doi:10.1016/j.nanoen.2014.08.016	Nano Energy	Ni-YSZ SOFC (solid oxide fuel cell)	Energy Storage Characterization of SOFCs	ZEISS Xradia Versa, ZEISS Ultra Plus		

Materials Science

Publication	Journal	Sample	Application	System	Sample relocation method	Alignment of images from different methods
Misak, H. E. & Mall, S. Investigation into microstructure of carbon nanotube multi-yarn. Carbon 72, 321–327 (2014). doi:10.1016/j.carbon.2014.02.012	Carbon	Carbon nanotube (CNT) yarns	Energy StorageChar- acterization of CNT yarns	ZEISS Axio Observer, ZEISS Xradia 520 Versa		
Merkle, A. Automated correlative tomography using XRM and FIB-SEM to span length scales and modalities in 3D materials. (2015).	Micros- copy and Analysis	AI 7075	Metals Correlative Microscopy between XRM and FIB-SEM	ZEISS Xradia 520 Versa, ZEISS Crossbeam 540, ZEISS Atlas		
Sudhanshu S. Singh, Jose J. Loza, Arno P. Merkle, Nikhilesh Chawla Three dimen- sional microstructural characterization of nanoscaleprecipitates in AA7075-T651 by focused ion beam (FIB) tomography doi:10.1016/j.matchar.2016.05.009	Materials Character- ization	AA7075-T651	Metals 3D Micro- structural charateri- zation	ZEISS Crossbeam 540, ZEISS Atlas		
Kejzlar, P., et al., Assesment of the structure and high temperature strength of $Fe_{35}AI_5Zr$ in- termetallic alloy, Metal 2013, 15. – 17.5.2013, Brno, Czech Republic, EU	Metal	$Fe_{35}Al_{5}Zr$ alloy	Metals Structure and phase composition of the Fe ₃₅ Al ₅ Zr alloy	ZEISS Axio Imager.M2m, ZEISS Ultra Plus	ZEISS Shuttle & Find, correlative microscopy sample holder	
Meyer, P. et. Al. In Depth Analyses of LEDs by a Combination of X-ray Computed Tomography (CT) and Light Microscopy (LM) Correlated with Scanning Electron Microscopy (SEM), J. Vis. Exp. (112), e53870, doi:10.3791/53870 (2016).	J. Vis. Exp.	LED	Semiconductor White light LEDs			
Thomas, C. Correlative Microscopy of Optical Materials, Imaging & Microscopy, Oct. 13, 2014	Imaging & Microscopy	LED	Semiconductor		ZEISS Shuttle & Find, correlative microscopy sample holder	
Gelb J, Finegan DP, Brett DJL, et al. Multi-scale 3D investigations of a commercial 18650 Li-ion battery with correlative electron and X-ray microscopy. J Power Sources 2017;357:77. doi:10.1016/j.jpowsour.2017.04.102	J Power Sources	Lithium Ion Batteries	Energy Storage			
Weisenberger et al., Multi-scale characteriza- tion of lithium ion battery cathode material by correlative X-ray and FIB-SEM microscopy, Microscopy and Analysis 29(5): 17–19, Sep- tember 2015.	Micros- copy and Analysis	Lithium Ion Batteries	Energy Storage Cathode material characterization			
Ch. Thomas et.al. Correlative Light and Electron Microscopy (CLEM) for Characteriza- tion of Lithium Ion Battery Materials, Microsc. Microanal. 16 (Suppl 2), 2010, doi:10.1017/S1431927610056254	Microsc. Microanal.	Lithium Ion Batteries	Energy Storage			
Merkle AP, Gelb J, Orchowski A, Fuchs J. X-ray microscopy: the cornerstone for correlative characterization methods in materials research and life science. Microsc Microanal 2014; 20 (Suppl 3):986. doi:10.1017/S1431927614006655	Microsc. Microanal.	Copper-Aluminum Alloy	Metals			
Gelb, J., Volkenandt, T., & Merkle, A. (2017). Correlative Microscopy in 3D: Recent Advance- ments in Multi-Scale Materials Science. Micros- copy and Microanalysis, 23(S1), 332–333.	Microsc. Microanal.	Carbonfiber rein- forced composite; Corroded Mg alloy				

Materials Science

Publication	Journal	Sample	Application	System	Sample relocation method	Alignment of images from different methods
Vaupel, M., and Zimmermann, H., Topography and Refractive Index Measurement of a Sub- µm Transparent Film on an Electronic Chip by Correlation of Scanning Electron and Confocal Microscopy, ZEISS White Paper, August 2014	ZEISS Microscopy	Mobile phone chip, letter printed as a gold layer on silicon surface. All covered by polymer passiv- ation layer.	Measuring topogra- phy and layer thick- ness of substrates via CLEM	Confocal Microscope, e.g. ZEISS LSM 700 on Axio Imager.Z2m with software ConfoMap 2. Electron Microscope: ZEISS Auriga	ZEISS Shuttle & Find with Corr- Mic Mat sample holder	
Vaupel, M., et al., Graphene Characterization by Correlation of Scanning Electron, Atomic Force and Interference Contrast Microscopy, ZEISS White Paper	ZEISS Microscopy	Stack of graphene layers on silicon wafer with native (2 nm) SiO ₂	Localize and mea- sure height varia- tions in graphene layers	ZEISS Axio Imager.Z2m, ZEISS Merlin Compact with AFM	ZEISS Shuttle & Find with Corr- Mic Mat sample holder	
Thomas, C., et al., Fast Structural and Compo- sitional Analysis of Aged Lilon Batteries with Shuttle & Find, ZEISS White Paper, Jan 2011	ZEISS Microscopy	Li-ion batteries	Microstructure characterization of Li-ion batteries with CLEM	ZEISS Axio Imager. Z2, ZEISS Supra 40 VP FE-SEM	ZEISS Shuttle & Find with Corr- Mic Mat sample holder	
Weisenberger, C., et al., Multi-scale Character- ization of Lithium Ion Battery Cathode Material by Correlative X-ray and FIB-SEM Microscopy, ZEISS Application Note, June 2015	ZEISS Microscopy	LiMn ₂ O ₄ cathode material of a commercial 18650 Li-ion battery	Using an XRM data set as a reference to perform site-specific FIB cross sectioning and tomography	ZEISS Xradia 520 Versa, ZEISS Crossbeam 540	Correlative ZEISS Atlas 5 software	
van der Wal, D., Enhancing Material Inspection and Characterization Information and Data Integrity By Combining Light and Scanning Electron Microscopy in a Correlative Workflow, ZEISS White Paper, Aug 17	ZEISS Microscopy	Industrial surface coating, printed circuit board, frac- tured metal rod	Using CLEM to enhance material inspection and char- acterization	ZEISS Smartzoom 5, ZEISS EVO MA10	ZEISS Shuttle & Find	ZEISS Shuttle & Find
Harris, W., Multi-scale Correlative Study of Corrosion Evolution in a Magnesium Alloy, ZEISS White Paper, Dec. 2015	ZEISS Microscopy	Magnesium alloys	Correlative tomog- raphy study of corrosion of a Mag- nesium alloy with sub- micron XRM, nanoscale XRM, and FIB-SEM	ZEISS Xradia 520 Vera, ZEISS Xradia 810 Ultra, ZEISS FIB-SEM	ZEISS Atlas 5	ZEISS Atlas 5
Gelb, J., Investigating Structure-property Relationships in a Carbon-fiber Composite ZEISS Correlative Microscopy, April 2017	ZEISS Microscopy	Carbon fiber reinforced com- posite hockey stick	Correlative light, Xray, and SEM to predict mechanical properties	ZEISS Axio Imager 2, ZEISS Xradia 520 Versa, ZEISS Crossbeam 540	ZEISS Atlas 5	ZEISS Atlas 5

Raw Materials Industry

Publication	Journal	Systems / Instruments	Alignment of images from different methods
Loïc Bertrand, Sylvain Bernard, Federica Marone, Mathieu Thoury, Ina Reiche, Aurélien	Springer	X-ray spectroscopy,	
Gourrier, Philippe Sciau, Uwe Bergmann (2015). Emerging Approaches in Synchrotron	International Publishing	3D microtomography,	
Studies of Materials from Cultural and Natural History Collections, Springer International	Switzerland 2015	XRF scanning,	
Publishing Switzerland 2015		DISCO beamline,	
doi:10.1007/s41061-015-0003-1		ZEISS Axio Observer.Z1	
Dra. Isabel Guerra Tschuschke, Sébastien Maussang; David Reece , M.Sc. Philipp Vecera,	ZEISS Microscopy	ZEISS EsB detector,	
Dr. rer. nat. Siegfried Eigler, Prof. Dr. Andreas Hirsch, Dr. rer. nat. Frank Hauke, Dipl. Ing. (FH)		ZEISS FE-SEM,	
Stefanie Freitag. In situ SEM and Raman investigations on graphene Comparison of		ZEISS-Renishaw system	
graphene, graphene oxide and reduced graphene oxide.		ensured SEM and	
ZEISS White Paper, May 2015.		Raman measurements	

Raw Materials Industry

Publication	Journal	Systems / Instruments	Alignment of images from different methods
C. Ascaso, J. Wierzchos, and A. De Los Rios. Symbiosis, 24 (1998) 221–234. In Situ Cellular and Enzymatic Investigations of Saxicolous Lichens Using Correlative Microscopical and Microanalytical Techniques.	ResearchGate	ZEISS SEM-BSE, ZEISS CLSM, ZEISS EDS, ZEISS TEM, ZEISS SEM-SE	
Michal Shemesh, Sefi Addadi, Yonat Milstein, Benjamin Geiger, and Lia Addadi (2015). Study of Osteoclast Adhesion to Cortical Bone Surfaces: A Correlative Microscopy Approach for Concomitant Imaging of Cellular Dynamics and Surface Modifications. doi:10.1021/acsami.5b08126	ACS Applied Materials & Interfaces	ZEISS Axiozoom.V16	
Guerra & C. Cardell (2015). Optimizing use of the structural chemical analyser (variable pressure FESEM-EDX raman spectroscopy) on micro-size complex historical paintings characterization. Journal of Microscopy. doi:10.1111/jmi.12265	Journal of Microscopy	ZEISS FE-SEM	
T. Wirtz, P. Philipp, JN. Audinot, D. Dowsett and S. Eswara (2015). High-resolution high- sensitivity elemental imaging by secondary ion mass spectrometry: from traditional 2D and 3D imaging to correlative microscopy. Nanotechnology 26 (2015) 434001 (22pp). doi:10.1088/0957-4484/26/43/434001	Nanotechnology	ZEISS Orion helium ion microscope with an in-house compact high-performance SIMS add-on system.	
Jan Goral and Ilija Miskovic, Jeff Gelb and Matthew Andrew (2015). Correlative XRM and FIB-SEM for (Non)Organic Pore Network Modeling in Woodford Shale Rock Matrix. doi:10.2523/18477-MS	ResearchGate	ZEISS Xradia 520 Versa, ZEISS Xradia 810 Ultra, ZEISS Crossbeam 540	
Jung-Kyun Kim, Yong-Eun Kwon, Sang-Gil Lee, Chang-Yeon Kim, Jin-Gyu Kim, Min Huh, Eunji Lee, Youn-Joong Kim (2017). Correlative microscopy of the constituents of a dinosaur rib fossil and hosting mudstone: Implications on diagenesis and fossil preservation. PLoS ONE 12 (10): e0186600. doi:10.1371/journal.pone.0186600		ZEISS LEO 1455VP ZEISS Merlin, ZEISS FE-EFTEM, ZEISS Libra MC	
Jung-Kyun Kim, Yong-Eun Kwon, Sang-Gil Lee, Ji-Hyun Lee, Jin-Gyu Kim, Min Huh, Eunji Lee & Youn-Joong Kim (2017). Disparities in correlating microstructural to nanostruc- tural preservation of dinosaur femoral bones. Scientific Reports. doi:10.1038/srep45562	Scientific Reports	ZEISS Axiophot, ZEISS LEO 1475VP, ZEISS Merlin, ZEISS Libra MC	
Benjamin Wipfler, Hans Pohl, Margarita I Yavorskaya and Rolf G Beutel (2016). A review of methods for analysing insect structures — the role of morphology in the age of phylogenomics. ScienceDirect. Current Opinion in Insect Science 2016, 18:60–68. doi:10.1016/j.cois.2016.09.004	ScienceDirect	ZEISS SEM	
Carolina Cardell, Isabel Guerra (2015). An overview of emerging hyphenated SEM-EDX and Raman spectroscopy systems: Applications in life, environmental and materials sciences. Trends in Analytical Chemistry. ScienceDirect. doi:10.1016/j.trac.2015.12.001	ScienceDirect	ZEISS SEM	
Stefanie Freitag. ZEISS Scanning Electron Microscopes with Integrated Raman Spectrometers Investigate Solid State Materials. Technology Note September 2015.	ZEISS Microscopy	ZEISS Raman-SEM	
Ute Schmidt, Karin Hollricher, Philippe Ayasse and Olaf Hollricher (2015). Correlative RISE microscopy: Raman imaging meets scanning electron probe microscopy. doi:10.1017/S1551929514001175	ResearchGate	ZEISS SEM, ZEISS EDX	
Brian J. Cardotta, Mark E. Curtis (2017). Identification and nanoporosity of macerals in coal by scanning electron microscopy. International Journal of Coal Geology. doi:10.1016/j.coal.2017.07.003	ScienceDirect		
Steven M. Reddy, Arie van Riessen, David W. Saxey, Tim E. Johnson, William D.A. Rickard, Denis Fougerouse, Sebastian Fischer, Ty J. Prosa, Katherine P. Rice, David A Reinhard, Yimeng Chen, David Olson (2016). Mechanisms of deformation-induced trace element migration in zircon resolved by atom probe and correlative microscopy. Geochimica et Cosmochimica Acta. doi:10.1016/j.gca.2016.09.019	Geochimica et Cosmochimica Acta		
Paul C. Hackley, Brett J. Valentine, Lenard M. Voortman, Daan S.B. van Oosten Slingeland & Javin Hatcherian (2017). Utilization of integrated correlative light and electron microscopy (iCLEM) for imaging sedimentary organic matter. Journal of Microscopy. doi:10.1111/jmi.12576	Journal of Microscopy		

Reviews and Protocols

Publication	Journal	Sample	Application	System	Sample relocation method	Alignment of images from different methods
Kopek, B. G., et al., Diverse protocols for cor- relative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples, 916, VOL.12 NO.5, 2017, nature protocols, doi:10.1038/nprot.2017.017		Aldehyde-fixed specimens prepa- red by Tokuyasu cryosectioning, whole-cell mount, cell unroofing and platinum replication, and resin embedding and sectioning	Correlative super- resolution fluores- cence imaging and electron microscopy			Fiducials
Hauser, M., et al., Correlative Super-Resolu- tion Microscopy: New Dimensions and New Opportunities, Chem. Rev., 2017, 117 (11), pp. 7428–7456, doi:10.1021/acs.chemrev.6b00604		Various	Review of correlative super-resolution fluorescence ima- ging			
Kirmse, R., and Hummel, E., Correlative Microscopy Protocols A Reference Guide to Correlative Sample Preparation, Zeiss White Paper, June 2013			Overview of existing sample preparati- on for correlative microscopy			
Stempinski, E., S., et al., Correlative Light and Electron Microscopy Techniques: Challenges and Successes, Microsc. Microanal. 21 (Suppl 3), 2015, doi:10.1017/S1431927615005164		Cell cultures grown on coverslips, resin sections on co- verslips, and resin sections on coated slot grids	Overview of CLEM methods	Laser scanning confocal microscope, ZEISS Sigma HD VP SEM	ZEISS Shuttle & Find and ITO coverslips with fiducial markers	Various soft- ware packages

Carl Zeiss Microscopy GmbH 07745 Jena, Germany microscopy@zeiss.com www.zeiss.com/corrmic

