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Introduction

Oil and gas from unconventional (shale) reservoirs has 

changed the landscape of North America energy markets. 

The exploration and production of natural gas from shales  

in Canada and United States have saturated North American  

gas markets, boosted Canada’s exports, and turned the  

U.S. into a net exporter of liquefied natural gas (LNG).

The evaluation and development of shale reservoirs is  

guided by reservoir characterization where geological  

models are populated with petrophysical properties, such  

as lithology, porosity, permeability, or water/oil saturation. 

These characteristics can be now determined by a cost-  

and time-efficient image-based method – digital rock  

analysis – currently becoming more popular as a  

complement to traditional laboratory measurements. 

Shale (mudrock) is a fine-grained sedimentary rock  

consisting of indurated interlaminated organic and  

nonorganic (mineral) matter, and is characterized by  

its ultra-low porosity and permeability. Organic matter  

contained within shale formations was compressed and 

heated deep within the earth over geologic time, forming  

hydrocarbons including oil and natural gas. These hydro- 

carbons occur in the pore spaces and micro-fractures in  

between individual minerals or adsorbed into organic matter. 

Shale pores, with a diameter that typically ranges between  

a few nanometers (for organic-matter-hosted pores) to a  

couple of micrometers (for mineral-matter-hosted pores),  

create connected and non-connected pore systems. 

These pore networks, both within organic and mineral  

matrices, connect to the natural or induced fracture systems 

that ultimately connect to the wellbore. The structure and 

the interconnectivity of these highly complex hydrocarbon 

flow pathways have been of interest to many petroleum  

industry and academia research and development groups  

focusing on multi-scale (non)continuum fluid flow and  

transport phenomena in shales, e.g., through particle-based 

molecular dynamics (MD), dissipative particle dynamics 

(DPD), Lattice Boltzmann method (LBM), or mesh-based 

computational fluid dynamics (CFD) fluid flow and  

transport simulations.[1]

Although there is significant interest in modeling and  

simulation of fluid flow and transport phenomena in shale 

pore network models, there is very little study focused  

on investigating representative – connected (effective) –  

3D “real-world” shale reservoir pore systems responsible  

for hydrocarbon production and storage. In this study,  

we image and analyze pore volume and connectivity  

for connected and disconnected pore networks within  

an organic-rich mudrock sample from Marcellus Shale  

in 3D with ultra-high-resolution (5 nm/voxel) focused  

ion beam scanning electron microscopy (FIB-SEM)  

tomography (serial-sectioning).   
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Digital Rock Analysis with Machine Learning  

Image Segmentation

In shales, understanding intricate pore networks, their  

geometry, connectivity, and distribution (both within  

organic and mineral matrix) are key factors affecting  

hydrocarbon production and storage mechanisms.  

They are often difficult, if not impossible, to measure  

by conventional slow and expensive lab techniques. 

Digital rock analysis provides qualitative and quantitative  

understanding of these petrophysical properties using  

multi-scale 2D and/or 3D imaging data without completely 

destroying valuable rock samples.

Figure 1 depicts the overall digital rock physics workflow  

presenting step-by-step procedure of going from imaging, 

through image processing and segmentation, to digital  

(porous) rock model reconstruction used for pore network 

modeling study.

Although mudrock heterogeneity can be observed and 

imaged over multiple scales by a variety of scientific digital 

imaging techniques (i.e., light, X-ray, or electron microscopy), 

dual-beam/cross-beam focused ion beam (FIB) scanning 

electron microscopy (SEM) serial sectioning provides the  

best 3D resolution for nano- and micro-pore imaging.[2]  

FIB-SEM serial sectioning is a high-precision tomographic  

imaging technique in which cross-section gallium ion  

milling is used to controllably remove 5- to 20-nm-thin  

layers of material (“slices”) of the sample, and electron  

imaging is used to characterize the freshly prepared  

sample surface.  

 

Automated sequential FIB milling and SEM imaging  

allows for the acquisition of a series of 2D images, which  

in turn allows for the reconstruction of a 3D model. ZEISS 

Crossbeam 550 FIB-SEM, used in this study, allows for  

simultaneously imaging the sample with both secondary 

and backscattered electrons. These two signals can be 

then blended into a single image to optimize contrast 

across pores, organics, and multiple mineral phases.

As the accuracy of petrophysical properties (measured  

with digital rock analysis) heavily relies on the quality of  

reconstructed digital rock models, any performance gap  

in image processing or segmentation will lead to misleading 

reservoir quality assessment. For example, incorrect segmen-

tation can result in over- or underestimation of porosity  

by few percent, which will consequently create significant  

error in reserves estimation calculations. An inaccurate  

segmentation can also result in even more significant  

errors in permeability simulations, as permeability is highly  

sensitive to small changes in critical pore throat diameter.

The last decade has seen a transformation in our ability  

to analyze and quantify complex data through the use of 

machine learning algorithms. These algorithms identify  

patterns in complex multidimensional data and use these 

patterns to perform classification or segmentation. 

As a result, machine learning segmentation is a powerful 

tool for the transformation of challenging image datasets, 

which may carry a variety of modality-specific artifacts  

and noise, into segments (labels), representing different 

groups of features of the rock microstructure, e.g.,  

pores or minerals, previously too difficult to segment  

by threshold-based approaches.[3] This advanced image  

analysis technique utilizes a learning classifier system that  

is trained using a “Forest of Random Trees” approach,[4]  

segmentation labels (identified and marked by a user  

with a paint tool), mask(s), and/or (filtered) dataset(s).[5] 

Once the classifier is trained, it can be used for segmenting 

the same or similar image data.
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Figure 1  Schematic of the digital rock analysis/physics workflow. First, a series of 2D images is acquired by e.g., FIB-SEM tomography; second, the images  
are aligned with each other, cropped, and filtered; third, the image dataset is segmented into different phases, such us pores, organics, or minerals;  
fourth, pores are divided into connected (effective) and non-connected (isolated) porosity; and fifth, representative 3D pore networks are determined,  
through pore size distribution analysis, and separated out for any further fluid flow and transport phenomena studies.  
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Pore Network Modeling

In this paper, using ultra-high-resolution (voxel size:  

5 nm x 5 nm x 5 nm) FIB-SEM serial sectioning image data, 

we investigate pore networks in two organic-rich regions  

of interest (ROIs) of Marcellus Shale.

First, image processing is used to improve image quality.  

In this process, we apply a combination of different  

filters and operations to remove noise, blur, and other  

background intensity variations from the images. Second, 

the image data is segmented, using machine learning,  

into three phases: pores, organic matter, and mineral  

matter. Third, the processed and segmented images are  

reconstructed into two digital rock models with dimensions 

of 3430 nm x 2785 nm x 2930 nm for Sample-1 (Figure 2) 

and 3845 nm x 2515 nm x 2100 nm for Sample-2 (Figure 3). 

The volume fractions of the mineral and organic phases  

are 49.74% and 33.99% (for Model-1), and 64.23%  

and 19.82% (for Model-2) respectively.

Figure 2  Digital rock model of the Marcellus Shale Sample-1 – pores (yellow), organic matter (brown), mineral matter (green). 

Figure 3  Digital rock model of Marcellus Shale Sample-2 –  
pores (yellow), organic matter (brown), mineral matter (green).
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Next, as seen in Figure 4 and Figure 5, the total porosity – 

16.27% for Sample-1 and 15.95% for Sample-2 – is separated 

out into connected (effective) and non-connected (isolated) 

pores. The effective porosity – 12.48% (Model-1) and 11.37%  

(Model-2) – is determined based on its connectivity to the 

digital rock model boundaries, while isolated porosity is  

simply the remaining pores. Note, that connected pores can 

be attached to some other pore networks outside of the 

boundary box of the digital rock models. Similar total and 

connected porosity values, for both digital rock models, 

show that porosity is uniformly distributed throughout  

the investigated organic-rich Marcellus Shale rock sample.  

In reservoir characterization, total porosity is used for the 

overall hydrocarbon storage assessment, while effective  

porosity is used for permeability (hydrocarbon production) 

calculations. It is, therefore important to gain insights  

into both types of porosity with a simultaneous study  

of the possibility of connecting isolated pores, through  

e.g., hydraulic fracturing design.

Finally, we provide two charts on the next page, with pore 

size distribution (PSD), comparing total and connected pore 

networks within both Marcellus Shale rock samples. As 

shown in Graph 1 (for Sample-1) and Graph 2 (for Sample-2),  

both FIB-SEM digital rock models contain pores with  

diameters that range between 15 nm to 200 nm. Pores  

with diameters from 15 nm to 30 nm are the most abundant 

within both Sample-1 and Sample-2 – almost 80% of the  

total number of pores. Although the average volume fraction 

of the connected porosity (12%) within both investigated 

Marcellus Shale rock samples is quite large (almost 75%  

of the average total pore volume of 16%), the number  

(frequency) of the connected pores is rather small. The high 

percentage of the average connected pore volume together 

with their relatively low frequency (as compared to the total 

porosity) is due to the fact that pores with diameters of 

around 150-200 nm – hence, with bigger pore volumes – 

are the primary contributors to the connected porosity.  

Contrarily, smaller pores (with diameter of around 15-50 nm) 

have very little to no contribution to the connected pore  

network, hence fluid flow and transport within shale oil  

and gas reservoirs.

Figure 4  Sample-1: Connected (effective) and non-connected (isolated)  
pore networks of the Marcellus Shale – connected pores (green),  
non-connected pores (red).

Figure 5  Sample-2: Connected (effective) and non-connected (isolated)  
pore networks of Marcellus Shale – connected pores (green), 
non-connected pores (red)
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Graph 2  Pore size distribution (PSD) of the total and connected (effective) porosity within the Marcellus Shale Sample-2.

Graph 1  Pore size distribution (PSD) of the total and connected (effective) porosity within the Marcellus Shale Sample-1.
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Conclusions

Machine learning image segmentation is a powerful tool 

that complements digital rock analysis and allows for  

characterizing challenging image data representing rock  

features, such as pores, micro-fractures, organic, or  

mineral matter naturally existing at multiple length scales  

in shales – unconventional oil and gas reservoirs.

In this study, pore network modeling of two organic- 

rich FIB-SEM digital rock models of the Marcellus Shale  

has been performed. It has been shown that pores  

with diameters smaller than 50 nm and high frequency  

(predominantly found within organic matter) have little  

to no contribution to connected porosity, whereas pores 

with diameter greater than 150 nm and low frequency  

contribute the most to the connected pore network.  

These bigger connected pores will be responsible  

for hydrocarbon production and storage, whereas  

the remaining non-connected pores will have some  

storage capacity.
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