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Label-free cellular imaging assays use native contrast within cells to analyze or monitor cellular phenotypes 

without the requirement of fluorescent labels or dyes. Since no transfection or staining of cells is required, 

there is no risk of interfering with underlying biological processes, and as such the popularity of using label-

free approaches in modern biology is rapidly increasing. 

The efficacy of analyzing cell behaviors in a label-free way is reliant on high contrast within the acquired data and 

robust image processing. Several methods for creating this contrast are used, including phase contrast (PH) and 

differential interference contrast (DIC), but these classical methods are hampered by a number of restrictions such 

as sample vessel and lid compatibility as well as compromised image quality at the edges of wells or dishes. 

Adaptive Phase Gradient Contrast (PGC) is a newly released technique available with ZEISS Celldiscoverer 7.

Contrary to the classical contrast techniques, PGC is compatible with all sample vessel types and plastic lids,  

is robust not only against liquid meniscus but also right to the edge of every single well and requires no adjust-

ment. This combination ensures that optimal contrast imaging can be performed over the entire sample with-

out any interaction from the user whatsoever. This significant development ensures that optimal label-free im-

aging is now available for high throughput data acquisition. 

Once the high contrast data is acquired, various local contrast and texture measures can be applied to detect image 

regions (like cell region and background region) automatically. This paper introduces the various contrast techniques 

used for label-free imaging and discusses a robust approach based on machine learning to extract cell proliferation 

curves for various compound treatments from time lapse cell culture experiments. With the increasing demand for 

label-free assays and the superior contrast now possible with Phase Gradient Contrast and Celldiscoverer 7, the vari-

ety of analysis possibilities is growing. ZEN imaging software (which controls Celldiscoverer 7) can be directly linked 

to a vast array of analysis solutions since it is this ability to tie together acquisition and analysis engines in an effec-

tive and flexible way that is of central importance in this field to ensure a future-proofed solution.

1 	 Introduction
Label-free cellular imaging assays use native contrast within 

cells to analyze or monitor cellular phenotypes without using 

fluorescent labels or dyes to tag cellular target structures. 

Optical microscopy techniques like differential interference 

contrast (DIC), phase contrast (PH) or phase gradient con-

trast (PGC) enhance the inherent contrast and content of 

cells, thus enabling the automated segmentation, tracking 

and phenotypic analysis of single cells over time via sophisti-

cated image analysis routines. The label-free imaging ap-

proach can be applied to monitor cell migration (e.g. scratch 

wound assays), cell differentiation (iPS cell differentiation) 

and cell proliferation kinetics to monitor and measure cell 

health over time.
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In particular, label-free cell proliferation assays can be used 

to test compounds via cell viability. No additional assay 

development steps such as reporter-systems or stably trans-

fected cell lines need to be established and the same assay 

approach can be easily introduced for several cell models. 

However, the image analysis of transmitted light contrast im-

ages is much more demanding and requires more complex 

methods like supervised machine learning algorithms rather 

than simple intensity thresholding, which is often sufficient 

for fluorescent micrographs.

Fluorescence (FL) imaging is a powerful tool for cell biology 

research. Although fluorescence labeling provides the contrast 

needed to identify cells or cellular substructures and to mon-

itor spatial and temporal signal redistribution, it comes with 

the risk of influencing native cellular functions. The label 

itself can cause adverse effects on the binding interactions 

that are being investigated, leading to false conclusions 

about binding properties of an analyte or by the necessary 

significant light exposure, causing phototoxicity, which limits 

the duration of continuous imaging. In addition, labels also 

introduce further assay complexity and can have a significant 

impact on the assay development. 

1.1 General challenges in label-free imaging

Image acquisition

Numerous contrasting methods are available to acquire 

images in transmitted light.  However, many of them show 

limitations - especially when applying them in the context of 

microplate imaging. Plate features like material, well size, 

lids and liquid meniscus alter the quality of the attainable 

contrast. As a result, the amount of usable data per plate 

and the reproducibility of subsequent analysis steps is sig

nificantly reduced (as described in part 3).

Image analysis

The strength of fluorescence imaging methods is their high 

specificity for target proteins and emitted wavelengths. 

Here, the presence of a certain protein is directly related to 

the pixel intensity. E.g. by using a marker for a cytosolic 

protein, cells appear as bright spots in the fluorescent image 

and can be detected by applying a threshold to the pixel 

intensity.

With label-free contrast methods however, regions of interest 

are detected based on certain morphological or textural cues. 

In phase contrast images for example, the cell periphery is 

recognizable by the so-called halo effect and cellular regions 

can be discriminated from background by their higher hetero-

geneity of intensities. Having said that, label-free imaging 

techniques are a feasible choice for measuring certain texture 

regions within the image, but require robust and sophisticat-

ed image analysis routines, such as classification techniques 

based on machine learning (as described in part 4). 

2 Contrast methods for label-free imaging

2.1 �Brief comparison of standard contrast 
methods

There are various contrast enhancing techniques that can be 

used for label-free imaging. All of the following methods use 

phase information to generate a brightness change within 

the image, thereby improving the visibility of transparent and 

unlabeled samples. 

Phase contrast (PH) is especially well suited for thin specimens, 

like cell monolayers. It uses an annulus in the condenser and 

a phase shift ring as well as a grey filter ring to generate a 

contrast enhanced image. A bright diffraction halo surround-

ing phase objects helps to visualize unstained structures. 

Differential Interference Contrast (DIC) generates three 

dimensional-like relief images. Two Wollaston prisms, a 

polarizer and an analyzer that are situated in the illumination 

and detection beam paths, respectively, are necessary to 

generate this contrast.

While both of these methods improve the visibility of other-

wise hard to detect or utterly invisible structures they both 

have a couple of limitations. Correct Köhler illumination and 

careful alignment of the contrast generating elements 

surrounding the sample are necessary for correct image for-

mation in both cases. If that alignment is disturbed then the 

contrast drops or even disappears completely.

Additionally DIC needs polarized light to pass through the 

sample. This prevents the usage of vessels with plastic bot-

tom or lids, since plastic depolarizes any light passing 
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through it. Both methods are susceptible to liquid meniscus 

forming at the borders of sample vessels – which is a typical 

situation in multi well plates for screening applications.

As PH and DIC usually require light absorbing optical ele-

ments (phase rings or polarizers) within the beampath, they 

significantly reduce the overall sensitivity of the imaging sys-

tem. This results in higher phototoxicity and reduced speed. 

PGC uses a rotating half pupil in the detection beam path.  

It is rather simple when compared to the other two methods 

since no light modulating elements are situated in the illumi-

nation beam path. This makes it very robust and easy to use. 

PGC is fully compatible with glass and plastic material and 

delivers a three dimensional relief image comparable to DIC. 

PGC offers excellent contrast up to the border of all different 

vessel types and is even robust against liquid meniscus.

2.2 �Technology behind adaptive Phase 
Gradient Contrast

As described above, PGC overcomes many limitations of oth-

er contrast methods, especially when teamed with automat-

ed imaging of micro plates. It is a smart combination of op-

tics and image processing offering the following features:

•	 It doesn’t influence sensitivity, contrast or resolution in 

fluorescence imaging

•	 It is robust against liquid meniscus and offers contrast 

across the whole well

•	 It provides low phototoxicity 

•	 It is completely free of adjustment and works with all 

objectives 

Figure 1  Comparison of adaptive phase gradient contrast, phase contrast and differential interference contrast. 

Celldiscoverer 7 offers a unique transmitted light (TL) con-

cept using an adjustment-free condenser and a far-red LED 

(725 nm). It generates a plain illumination to reduce image 

artefacts due to liquid meniscus and well-geometry. There 

are no additional components within the TL beampath. 

Instead, the contrast is generated within the detection 

beampath in front of the camera.

The fundamental principle is based on oblique illumination. 

Oblique illumination uses a half-pupil to cover one half of 

the condenser aperture. As a result the sample is illuminated 

from one direction only, generating a relief-like contrast.  

Instead of illuminating from one direction, it is optically 

equivalent to detect light from only one direction. This is 

done by placing the half-pupil within the detection beam-

path in a conjugated plane to the condenser aperture.  

This is important for the robustness of the technique as it is 

this geometry that ensures that physical obstacles such as 

liquid meniscus or plastic lids etc. do not have an impact on 

the contrast quality. 

The half pupil is fully motorized. It is automatically removed 

from the beampath to guarantee highest image quality for 

fluorescence imaging. In addition it can be rotated to detect 

light from opposite directions and to adapt to the well 

geometry.

As shown in Figure 2, two images are acquired to generate a 

phase gradient contrast image. Each of the images show the 

oblique detection contrast, with the half pupil is rotated by 
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180 degrees in each case. The images are processed online 

according to the formula shown in the figure above.  

The resulting image shows the phase gradient contrast. 

As the half pupil can be removed from the beampath, imag-

es with simple oblique detection can be acquired instead or 

in addition to the phase gradient contrast image. Thus, this 

concept offers three contrast methods:

•	 Brightfield contrast

•	 Oblique contrast

•	 Phase gradient contrast

Figure 2  Principle of Phase Gradient Contrast (see text for details)

Figure 3  Principle of Phase Gradient Contrast (see text for details)

Using PGC with a fixed angle would restrict the efficacy of 

this technique towards the edges of wells, which is the same 

restriction suffered using other methods. To guarantee a 

high contrast, the orientation of the half pupil should always 

be perpendicular to the well edge. As the half pupil angle 

can be freely rotated, excellent contrast can be created irre-

spective of the location within the well (s. Figure 3).

Since Celldiscoverer 7 automatically detects the sample car-

rier geometry and the precise location of the current field of 

view, these adaptations are automatically applied. This 

means that absolutely no interaction or adjustment is re-

quired by the user to achieve good contrast across the whole 

sample up to the edge of the well (s. Figure 4).  

The adaptive PGC is fully compatible with all objectives, filter 

sets and sample carriers. As mentioned above, due to the 

hardware geometry this contrasting method stays robust, 

even against liquid meniscus or plastic lids. Since the TL light 

source is a far-red LED this technique is extremely gentle for 

live samples and can be used at high speed. You can perform 

applications based on label-free assays or let the system 

automatically combine transmitted light with multiple fluo-

rescence channels using triggered LEDs. This ensures fast, 

comprehensive and flexible imaging options.
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3 Image analysis

Cell proliferation assays are an ideal use case for label-free 

imaging. Here, cell coverage over time is quantified from a 

time lapse sequence of contrast images. As mentioned 

above, cell region detection from transmitted light images 

requires more complex image processing than simple inten-

sity thresholding, regardless of the chosen contrast method.

To detect cell regions, we first filtered the brightfield images 

using 17 different filter kernels, including smoothing-, edge- 

and texture-filters. Thus, we obtained 18 different features 

per pixel, composed by one intensity value from the original 

image plus 17 intensity values from the filtered images.  

We then used the 17 features, to classify each pixel into two 

groups (foreground or background) using a random forest 

classifier. Finally, the cell coverage corresponds to the ratio of 

the number of foreground pixels to the total number of pixels. 

Applying a self-learning classifier to a multi-feature image 

has several advantages compared to simple intensity thresh-

olding. Firstly, the classification is much more robust due to 

incorporation of more data points. Secondly, pixel classifica-

tion is not only restricted to marker intensity, but differing 

texture regions can also be effectively discriminated. This is 

Figure 4  Comparison of Phase contrast (left), transmitted light (centre) and phase gradient contrast (right) at the bottom border of a well.

particularly important for the contrast methods described 

above: Here, a cell region is not defined by higher or lower 

intensity, but by different contrast and texture patterns (like 

the halo effect in phase contrast).

A random forest is a supervised machine learning algorithm, 

i.e. it requires a set of training data to setup the classification 

model. In this case, the training set consisted of a few hun-

dred pixels that were manually labeled as foreground or 

background. Based on this training data, the random forest 

algorithm creates many independent decision trees. Each de-

cision tree consists of a series of binary decisions based on 

the filter values of a pixel. The result of a decision tree is a 

binary decision of whether a pixel belongs to the foreground 

class or the background class. By combining many decision 

trees to a “forest” of trees and averaging their output, the 

outcome of the classifier corresponds to the probability of 

each pixel belonging to either background or foreground 

class. Thus, an incorrect binary classification of a few deci-

sion trees is averaged out, making the classification more ro-

bust. The resulting probability image is then thresholded to 

obtain the final foreground / background class assignment.
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Training data can be manually collected from a domain 

expert in a very intuitive way by painting foreground and 

background regions in differing colors on selected images. 

This can be done with open source software like Ilastik [1]  

or the Weka Segmentation Plugin available in Fiji [2].  

These tools also include functionality for classifier training 

and classification.

4 Example: Growth Assay

Combining automated imaging with machine-learning-based 

processing has leveraged robust cell proliferation measure-

ments at the large scale to study cytotoxic effects of various 

chemical treatments.

384-well-plates were scanned using brightfield acquisition 

with Celldiscoverer 7. The plates were imaged every 45 min-

utes over 48 hours, resulting in ca. 500 GB of image data 

per plate. Taking this data as input, growth curves showing 

relative cell coverage over time were computed for each well 

(see 6).

Unaffected cell proliferation can be described with the logis-

tic function where t is the time, L the saturation value, k the 

steepness of the curve, t0 the sigmoid’s midpoint and y0 the 

offset. By fitting this model to data from untreated control 

wells, we obtained a reference curve for unaffected growth 

(Figure 6 black line in detail view).

Effects of compound treatments were then studied by com-

paring with the control curve (dotted line). We tested cell 

proliferation effects of three chemical compounds, DMSO, 

Staurosporine and Aphidicoline in concentrations ranging 

from 0.25 µM (blue) to 160 µM (red). The curves show mean 

cell coverage and corresponding confidence intervals calcu-

lated over 4 wells. 

Cell growth in DMSO treated wells follows the standard 

curve over the whole concentration range (Fig 7, upper 

graph), which identifies DMSO as non-toxic reagent.  

On the other hand, Staurosporine and Aphidicoline treat-

ment clearly affect cell growth in a concentration-dependent 

Figure 5  Image analysis workflow

17 Filters

Random Forest Classification

manner (Fig 7, middle and bottom graphs). Interestingly, 

both compounds show highly diverging growth profiles, 

since they target different cellular mechanisms.
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When treated with the pan-kinase inhibitor Staurosporine, 

cells show initial growth in the first 2 hours after seeding, 

followed by a steep decrease in cell coverage, indicating that 

cells are dying and detaching from the substrate. In contrast 

to that, the cell-cycle inhibitor Aphidicoline induces a flatten-

ing of the growth curve without a decrease, showing that 

cells stop proliferating but remain attached to the substrate 

and do not die.

5 Conclusion

Given the significant shift towards label-free assays in recent 

months and years in Life Science Research, the available 

range of acquisition and analysis workflows has considerably 

increased. In addition to the classical transmitted light 

contrast methods such as phase contrast and DIC, the devel-

opment of more robust techniques like Adaptive Phase 

Gradient Contrast now increase the possibilities in terms of 

throughput and data integrity by extending the sample cov-

erage, acquisition speed and image quality across an entire 

dish or multi-well plate. By creating a hands free acquisition 

routine that ensures automatic optimization of each acquisi-

tion with minimal user interaction, label-free assays can now 

be reliably run independent of user experience or microscopy 

knowledge, which is a prerequisite for any assay that needs 

consistent repetitions in order to fulfil statistical analysis.

Figure 6  Cell growth measurements in 384 well format. The graph at the 
front is a detail view of well D08 (highlighted in blue on the well plate).  
Cell coverage over time (green line) was fitted with a logistic model (black 
line) to describe unaffected cell proliferation.

Figure 7  Compound effects on cell growth. Cells were treated with different 
compounds, DMSO (top), Staurosporine (middle) and Aphidicoline (bottom). 
Different compound concentrations are indicated by color (blue: low con­
centration, red: high concentration). Error ranges correspond to the 68 % 
confidence interval.
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As the number and nature of label-free assays continues to 

expand, so do the analysis options. Modern big data ap-

proaches such as supervised classification with random for-

ests enable robust quantification of label-free images, as we 

have demonstrated in this study. Many commercial software 

providers include label-free analysis routines in their packag-

es and resources such as Fiji and Ilastik provide a solid basis 

for newly developed analysis regimes to be shared with the 

community free of charge. In order to keep pace with the 

rapid development of these analysis tools, the ZEN software 

is designed as an open interface that can be rapidly and eas-

ily linked to both commercial and freely available software. 

Once acquired, images can be ported both manually and 

automatically to the analysis package of choice in order for 

image processing to take place. This design ensures that 

users of Celldiscoverer 7 are not limited to a single analysis 

software but rather have access to the latest developments 

in label-free image processing across all software platforms. 

The image quality and high throughput of Celldiscoverer 7 

together with the great flexibility in terms of analysis open 

new possibilities for label-free assays in life sciences.

References:

[1] �C. Sommer, C. Strähle, U. Köthe, F. A. Hamprecht 

ilastik: Interactive Learning and Segmentation Toolkit. 

Eighth IEEE International Symposium on Biomedical Imaging (ISBI). Proceedings, (2011), 230 – 233 

[2] �Schindelin, J.; Arganda-Carreras, I. & Frise, E. et al. 

“Fiji: an open-source platform for biological-image analysis” 

Nature methods 9(7) (2012): 676 – 682, PMID 22743772

[3] �Pedregosa et al. 

Scikit-learn: Machine Learning in Python  

JMLR 12, pp. 2825 – 2830, 2011.

[4] �Jones E, Oliphant E, Peterson P, et al.  

SciPy: Open Source Scientific Tools for Python  

http://www.scipy.org/ (2001) Online; accessed 2017-06-29].

[5] �https://seaborn.pydata.org/

[6] �Wes McKinney 

Data Structures for Statistical Computing in Python 

Proceedings of the 9th Python in Science Conference, 51 – 56 (2010)

[7] �John D. Hunter.  

Matplotlib: A 2D Graphics Environment,  

Computing in Science & Engineering, 9, 90 – 95 (2007), DOI:10.1109/MCSE.2007.55

http://ieeexplore.ieee.org/document/4160265/?reload=true


Carl Zeiss Microscopy GmbH 
07745 Jena, Germany  
microscopy@zeiss.com  
www.zeiss.com/celldiscoverer

EN
_4

1_
01

3_
15

9 
| C

Z 
02

-2
01

8 
| D

es
ig

n,
 s

co
pe

 o
f 

de
liv

er
y 

an
d 

te
ch

ni
ca

l p
ro

gr
es

s 
su

bj
ec

t 
to

 c
ha

ng
e 

w
ith

ou
t 

no
tic

e.
 | 

©
 C

ar
l Z

ei
ss

 M
ic

ro
sc

op
y 

G
m

bH

N
ot

 f
or

 t
he

ra
pe

ut
ic

, t
re

at
m

en
t 

or
 m

ed
ic

al
 d

ia
gn

os
tic

 e
vi

de
nc

e.
 N

ot
 a

ll 
pr

od
uc

ts
 a

re
 a

va
ila

bl
e 

in
 e

ve
ry

 c
ou

nt
ry

. C
on

ta
ct

 y
ou

r 
lo

ca
l Z

EI
SS

 r
ep

re
se

nt
at

iv
e 

fo
r 

m
or

e 
in

fo
rm

at
io

n.

http://facebook.com/zeissmicroscopy
http://flickr.com/zeissmicro
http://twitter.com/zeiss_micro
http://youtube.com/zeissmicroscopy
mailto:micro%40zeiss.com?subject=White%20Paper

